Perspectives in Earthworm Molecular Phylogeny: Recent Advances in Lumbricoidea and Standing Questions

8Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Earthworm systematics have been limited by the small number of taxonomically infor-mative morphological characters and high levels of homoplasy in this group. However, molecular phylogenetic techniques have yielded significant improvements in earthworm taxonomy in the last 15 years. Several different approaches based on the use of different molecular markers, sequencing techniques, and compromises between specimen/taxon coverage and phylogenetic information have recently emerged (DNA barcoding, multigene phylogenetics, mitochondrial genome analysis, transcriptome analysis, targeted enrichment methods, and reduced representation techniques), pro-viding solutions to different evolutionary questions regarding European earthworms. Molecular phylogenetics have led to significant advances being made in Lumbricidae systematics, such as the redefinition or discovery of new genera (Galiciandrilus, Compostelandrilus, Vindoboscolex, Castellodrilus), delimitation and revision of previously existing genera (Kritodrilus, Eophila, Zophoscolex, Bimastos), and changes to the status of subspecific taxa (such as the Allolobophora chaetophora complex). These approaches have enabled the identification of problems that can be resolved by molecular phyloge-netics, including the revision of Aporrectodea, Allolobophora, Helodrilus, and Dendrobaena, as well as the examination of small taxa such as Perelia, Eumenescolex, and Iberoscolex. Similar advances have been made with the family Hormogastridae, in which integrative systematics have contributed to the description of several new species, including the delimitation of (formerly) cryptic species. At the family level, integrative systematics have provided a new genus system that better reflects the diversity and biogeography of these earthworms, and phylogenetic comparative methods provide insight into earthworm macroevolution. Despite these achievements, further research should be performed on the Tyrrhenian cryptic complexes, which are of special eco-evolutionary interest. These examples highlight the potential value of applying molecular phylogenetic techniques to other earthworm families, which are very diverse and occupy different terrestrial habitats across the world. The systematic implementation of such approaches should be encouraged among the different expert groups worldwide, with emphasis on collaboration and cooperation.

Cite

CITATION STYLE

APA

Marchán, D. F., Decaëns, T., Domínguez, J., & Novo, M. (2022). Perspectives in Earthworm Molecular Phylogeny: Recent Advances in Lumbricoidea and Standing Questions. Diversity, 14(1). https://doi.org/10.3390/d14010030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free