Use of CeO2 nanoparticles to enhance UV-shielding of transparent regenerated cellulose films

81Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

Abstract

The major challenge in preparing polymer nanocomposites is to prevent the agglomeration of inorganic nanoparticles (NPs). Here, with regenerated cellulose (RC) films as supporting medium, UV-shielding and transparent nanocomposite films with hydrophobicity were fabricated by in situ synthesis of CeO2 NPs. Facilitated through the interaction between organic and inorganic components revealed by X-ray diffraction (XRD) and Fourier transformation infrared spectroscopy (FTIR) characterization, it was found that CeO2 NPs were uniformly dispersed in and immobilized by a cellulose matrix. However some agglomeration of CeO2 NPs occurred at higher precursor concentrations. These results suggest that the morphology and particle size of CeO2 and the corresponding performance of the resulting films are affected by the porous RC films and the concentrations of Ce(NO3)3·6H2O solutions. The optimized nanocomposite film containing 2.95 wt% CeO2 NPs had more than 75% light transmittance (550 nm), high UV shielding properties, and a certain hydrophobicity.

Cite

CITATION STYLE

APA

Wang, W., Zhang, B., Jiang, S., Bai, H., & Zhang, S. (2019). Use of CeO2 nanoparticles to enhance UV-shielding of transparent regenerated cellulose films. Polymers, 11(3). https://doi.org/10.3390/polym11030458

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free