Ruminant-specific retrotransposons shape regulatory evolution of bovine immunity

11Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Cattle are an important livestock species, and mapping the genomic architecture of agriculturally relevant traits such as disease susceptibility is a major challenge in the bovine research community. Lineage-specific transposable elements (TEs) are increasingly recognized to contribute to gene regulatory evolution and variation, but this possibility has been largely unexplored in ruminant genomes. We conducted epigenomic profiling of the type II interferon (IFN) response in bovine cells and found thousands of ruminant-specific TEs including MER41_BT and Bov-A2 elements predicted to act as IFN-inducible enhancer elements. CRISPR knockout experiments in bovine cells established that critical immune factors including IFNAR2 and IL2RB are transcriptionally regulated by TE-derived enhancers. Finally, population genomic analysis of 38 individuals revealed that a subset of polymorphic TE insertions may function as enhancers in modern cattle. Our study reveals that lineage-specific TEs have shaped the evolution of ruminant IFN responses and potentially continue to contribute to immune gene regulatory differences across modern breeds and individuals. Together with previous work in human cells, our findings demonstrate that lineage-specific TEs have been independently co-opted to regulate IFN-inducible gene expression in multiple species, supporting TE co-option as a recurrent mechanism driving the evolution of IFN-inducible transcriptional networks.

Cite

CITATION STYLE

APA

Kelly, C. J., Chitko-McKown, C. G., & Chuong, E. B. (2022). Ruminant-specific retrotransposons shape regulatory evolution of bovine immunity. Genome Research, 32(8), 1474–1487. https://doi.org/10.1101/gr.276241.121

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free