Pharmaceutical CEC compounds are a potential threat to man, animals, and the environ-ment. In this study, a sol–gel-derived TiO2 (SynTiO2) was produced and subsequently sonochemically doped with a 1.5 wt% Mo to obtain the final product (Mo (1.5 wt%)/SynTiO2). The as-prepared materials were characterized for phase structure, surface, and optical properties by XRD, TEM, N2 adsorption–desorption BET isotherm at 77 K, and PSD by BJH applications, FTIR, XPS, and UV-Vis measurements in DRS mode. Estimated average crystallite size, particle size, surface area, pore-volume, pore size, and energy bandgap were 16.10 nm, 24.55 nm, 43.30 m2/g, 0.07 cm3/g, 6.23 nm, and 3.05 eV, respectively, for Mo/SynTiO2. The same structural parameters were also estimated for the unmodified SynTiO2 with respective values of 14.24 nm, 16.02 nm, 133.87 m2/g, 0.08 cm3/g, 2.32 nm, and 3.3 eV. Structurally improved (Mo (1.5 wt%)/SynTiO2) achieved ≈100% carbamazepine (CBZ) degradation after 240 min UV irradiation under natural (unmodified) pH conditions. Effects of initial pH, catalyst dosage, initial pollutant concentration, chemical scavengers, contaminant ions, hydrogen peroxide (H2O2), and humic acid (HA) were also investigated and discussed. The chemical scavenger test was used to propose involved photocatalytic degradation process mechanism of CBZ.
CITATION STYLE
Anucha, C. B., Bacaksiz, E., Stathopoulos, V. N., Pandis, P. K., Argirusis, C., Andreouli, C. D., … Altin, I. (2022). Molybdenum Modified Sol–Gel Synthesized TiO2 for the Photocatalytic Degradation of Carbamazepine under UV Irradiation. Processes, 10(6). https://doi.org/10.3390/pr10061113
Mendeley helps you to discover research relevant for your work.