In sand-dust environments, the low quality of images captured outdoors adversely affects many remote-based image processing and computer vision systems, because of severe color casts, low contrast, and poor visibility of sand-dust images. In such cases, conventional color correction methods do not guarantee appropriate performance in outdoor computer vision applications. In this paper, we present a novel color correction and dehazing algorithm for sand-dust image enhancement. First, we propose an effective color correction method that preserves the consistency of the chromatic variances and maintains the coincidence of the chromatic means. Next, a transmission map for image dehazing is estimated using the gamma correction for the enhancement of color-corrected sand-dust images. Finally, a cross-correlation-based chromatic histogram shift algorithm is proposed to reduce the reddish artifacts in the enhanced images. We performed extensive experiments for various sand-dust images and compared the performance of the proposed method to that of several existing state-of-the-art enhancement methods. The simulation results indicated that the proposed enhancement scheme outperforms the existing approaches in terms of both subjective and objective qualities.
CITATION STYLE
Jeon, J. J., Park, T. H., & Eom, I. K. (2022). Sand-Dust Image Enhancement Using Chromatic Variance Consistency and Gamma Correction-Based Dehazing. Sensors, 22(23). https://doi.org/10.3390/s22239048
Mendeley helps you to discover research relevant for your work.