Specificity of the mouse cytotoxic T lymphocyte response to adenovirus 5. E1A is immunodominant in H-2b, but not in H-2d or H-2k mice.

  • Rawle F
  • Knowles B
  • Ricciardi R
  • et al.
66Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The Ag specificity and MHC restriction of the CTL response to adenovirus 5 (Ad5) in three strains of mice, C57BL/10 (H-2b), BALB/c (H-2d), and C3H/HeJ (H-2k), were tested. Polyclonal Ad5-specific CTL were prepared by priming mice in vivo with live Ad5 virus followed by secondary in vitro stimulation of the spleen cells with virus-infected syngeneic cells. The Ad5-specific CTL were Db restricted in C57BL/10 and Kk restricted in C3H/HeJ. In BALB/c mice both Kd- and Dd/Ld-restricted CTL were detected. The polyclonal Ad5-specific CTL response in C57BL/10 mice is directed exclusively against the products of the E1A region, which comprises only 5% of the Ad5 genome. In BALB/c mice E1A is at best a very minor target Ag and in C3H/HeJ mice E1A is not recognized at all. Using the H-2 congenic mouse strains B10.BR (H-2k) and C3H.SW (H-2b) it was shown that the immunodominance of E1A is H-2 dependent. The 19-kDa glycoprotein encoded in the E3 region of Ad5, which binds to class I MHC in the endoplasmic reticulum and prevents its translocation to the cell surface, does not affect the specificity of the CTL response in C57BL/10 mice toward E1A. However, it affects the MHC restriction of the Ad5-specific response in BALB/c mice, selectively inhibiting generation of Kd-restricted CTL.

Cite

CITATION STYLE

APA

Rawle, F. C., Knowles, B. B., Ricciardi, R. P., Brahmacheri, V., Duerksen-Hughes, P., Wold, W. S., & Gooding, L. R. (1991). Specificity of the mouse cytotoxic T lymphocyte response to adenovirus 5. E1A is immunodominant in H-2b, but not in H-2d or H-2k mice. The Journal of Immunology, 146(11), 3977–3984. https://doi.org/10.4049/jimmunol.146.11.3977

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free