Attention-Based Machine Vision Models and Techniques for Solar Wind Speed Forecasting Using Solar EUV Images

13Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Extreme ultraviolet images taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory make it possible to use deep vision techniques to forecast solar wind speed—a difficult, high-impact, and unsolved problem. At a 4 day time horizon, this study uses attention-based models and a set of methodological improvements to deliver an 11.1% lower RMSE and a 17.4% higher prediction correlation compared to the previous work testing on the period from 2010 to 2018. Our analysis shows that attention-based models combined with our pipeline consistently outperform convolutional alternatives. Our study shows a large performance improvement by using a 30 min as opposed to a daily sampling frequency. Our model has learned relationships between coronal holes' characteristics and the speed of their associated high-speed streams, agreeing with empirical results. Our study finds a strong dependence of our best model on the phase of the solar cycle, with the best performance occurring in the declining phase.

Cite

CITATION STYLE

APA

Brown, E. J. E., Svoboda, F., Meredith, N. P., Lane, N., & Horne, R. B. (2022). Attention-Based Machine Vision Models and Techniques for Solar Wind Speed Forecasting Using Solar EUV Images. Space Weather, 20(3). https://doi.org/10.1029/2021SW002976

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free