Background: As a therapeutic target for cancer treatment, HSP90 has been explored extensively. However, the significant side effects of the HSP90 inhibitor 17AAG have limited its clinical use. Methods: In this study, we used hyaluronic acid (HA)–decorated DOTAP–PLGA hybrid nanoparticles (HA-DOTAP-PLGA NPs) as 17AAG-delivery carriers for targeted colon cancer therapy. Results: Different methods were used to characterize the successful fabrication of these hybrid PLGA NPs. Our results demonstrated that internalization of HA-NPs in colon cancer cells was governed by CD44receptor–mediated endocytosis. Annexin V–propidium iodide staining experiments revealed that cell apoptosis induced by HA-NPs-17AAG in colon cancer cells was more efficient than free 17AAG. In two animal models used to screen anticancer efficacy (Luc-HT29 subcutaneous xenograft and AOM/DSS-induced orthotopic tumor model), HA-NPs-17AAG significantly inhibited xenograft and orthotopic tumor growth, demonstrating HA-NPs-17AAG had much better therapeutic efficiency than free 17AAG. It is worth noting that great biocompatibility of HA-DOTAP-PLGA NPs was observed both in vitro and in vivo. Conclusion: Our research offers a preclinical proof of concept for colon cancer therapy with DOTAP-PLGA NPs as a creative drug-delivery system.
CITATION STYLE
Pan, C., Zhang, T., Li, S., Xu, Z., Pan, B., Xu, S., … Xu, C. (2021). Hybrid nanoparticles modified by hyaluronic acid loading an hsp90 inhibitor as a novel delivery system for subcutaneous and orthotopic colon cancer therapy. International Journal of Nanomedicine, 16, 1743–1755. https://doi.org/10.2147/IJN.S275805
Mendeley helps you to discover research relevant for your work.