In the present work, we report the studies on perfectly homogeneous nanocomposites composed of polystyrene-grafted silver nanoparticles (Ag@PS) as a bioactive fulfilment and a mixture of polystyrene (PS) and polyvinyl alcohol (PVA) as a matrix. The procedure developed by our group of the nanocomposites’ preparation consists of three steps: synthesis of narrow-dispersive AgNPs (5.96 ± 1.02 nm); grafting of narrowly dispersed polystyrene onto the surface of AgNPs; thermoforming with a mixture of PS/PVA. Kirby-Bauer (K-B) and Dynamic Shake Flask (DSF) assays revealed high antibacterial activity against a series of Gram(−) and Gram(+) bacteria strains of the fabricated nanocomposites at low silver content (0.5%). We showed that the doping of Ag/PS composites with PVA increases the antibacterial activity of composites. The hydrophilic component in the nanocomposites enables easier water migration inside the polymer matrix, which makes releasing silver nanoparticles and silver ions to the environment facile.
CITATION STYLE
Krzywicka, A., & Megiel, E. (2020). Silver-polystyrene (Ag/ps) nanocomposites doped with polyvinyl alcohol (pva)—fabrication and bactericidal activity. Nanomaterials, 10(11), 1–15. https://doi.org/10.3390/nano10112245
Mendeley helps you to discover research relevant for your work.