The Local Antimagic Chromatic Numbers of Some Join Graphs

  • Yang X
  • Bian H
  • Yu H
  • et al.
N/ACitations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Let G=(V(G),E(G)) be a connected graph with n vertices and m edges. A bijection f:E(G)→{1,2,⋯,m} is an edge labeling of G. For any vertex x of G, we define ω(x)=∑e∈E(x)f(e) as the vertex label or weight of x, where E(x) is the set of edges incident to x, and f is called a local antimagic labeling of G, if ω(u)≠ω(v) for any two adjacent vertices u,v∈V(G). It is clear that any local antimagic labelling of G induces a proper vertex coloring of G by assigning the vertex label ω(x) to any vertex x of G. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of different vertex labels taken over all colorings induced by local antimagic labelings of G. In this paper, we present explicit local antimagic chromatic numbers of Fn∨K2¯ and Fn−v, where Fn is the friendship graph with n triangles and v is any vertex of Fn. Moreover, we explicitly construct an infinite class of connected graphs G such that χla(G)=χla(G∨K2¯), where G∨K2¯ is the join graph of G and the complement graph of complete graph K2. This fact leads to a counterexample to a theorem of Arumugam et al. in 2017, and our result also provides a partial solution to Problem 3.19 in Lau et al. in 2021.

Cite

CITATION STYLE

APA

Yang, X., Bian, H., Yu, H., & Liu, D. (2021). The Local Antimagic Chromatic Numbers of Some Join Graphs. Mathematical and Computational Applications, 26(4), 80. https://doi.org/10.3390/mca26040080

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free