Metal–organic framework (MOF)-derived pure ZnO and Cu-doped ZnO nanocages were fabricated by calcining a zeolitic imidazole framework (ZIF-8) and Cu-doped ZIF-8. The morphology and crystal structure of the samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). It was found that Cu doping did not change the crystal structures and morphologies of MOF-derived ZnO nanocages. The H2S-sensing properties of the sensors based on ZnO and Cu-doped ZnO nanocages were investigated. The results indicated that the H2S-sensing properties of MOF-derived ZnO nanocages were effectively improved by Cu doping, and the optimal doping content was 3 at%. Moreover, 3 at% Cu-doped ZnO nanocages showed the highest response of 4733 for 5 ppm H2S at 200 °C, and the detection limit could be as low as 20 ppb. The gas-sensing mechanism was also discussed.
CITATION STYLE
Qi, B., Wang, X., Wang, X., Cheng, J., & Shang, Y. (2022). Synthesis and H2S-Sensing Properties of MOF-Derived Cu-Doped ZnO Nanocages. Nanomaterials, 12(15). https://doi.org/10.3390/nano12152579
Mendeley helps you to discover research relevant for your work.