Progressively Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

3Citations
Citations of this article
87Readers
Mendeley users who have this article in their library.

Abstract

Unsupervised image-to-image translation has received considerable attention due to the recent remarkable advancements in generative adversarial networks (GANs). In image-to-image translation, state-of-the-art methods use unpaired image data to learn mappings between the source and target domains. However, despite their promising results, existing approaches often fail in challenging conditions, particularly when images have various target instances and a translation task involves significant transitions in shape and visual artifacts when translating low-level information rather than high-level semantics. To tackle the problem, we propose a novel framework called Progressive Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization (PRO-U-GAT-IT) for the unsupervised image-to-image translation task. In contrast to existing attention-based models that fail to handle geometric transitions between the source and target domains, our model can translate images requiring extensive and holistic changes in shape. Experimental results show the superiority of the proposed approach compared to the existing state-of-the-art models on different datasets.

Cite

CITATION STYLE

APA

Lee, H. Y., Li, Y. H., Lee, T. H., & Aslam, M. S. (2023). Progressively Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation. Sensors, 23(15). https://doi.org/10.3390/s23156858

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free