Segmentation of bone structures with the use of deep learning techniques

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The paper is focused on automatic segmentation task of bone structures out of CT data series of pelvic region. The authors trained and compared four different models of deep neural networks (FCN, PSPNet, U-net and Segnet) to perform the segmentation task of three following classes: Background, patient outline and bones. The mean and class-wise Intersection over Union (IoU), Dice coefficient and pixel accuracy measures were evaluated for each network outcome. In the initial phase all of the networks were trained for 10 epochs. The most exact segmentation results were obtained with the use of U-net model, with mean IoU value equal to 93.2%. The results where further outperformed with the U-net model modification with ResNet50 model used as the encoder, trained by 30 epochs, which obtained following result: MIoU measure - 96.92%, "bone"class IoU - 92.87%, mDice coefficient - 98.41%, mDice coefficient for "bone"- 96.31%, mAccuracy - 99.85% and Accuracy for "bone"class - 99.92%.

Cite

CITATION STYLE

APA

KRAWCZYK, Z., & Starzyński, J. (2021). Segmentation of bone structures with the use of deep learning techniques. Bulletin of the Polish Academy of Sciences: Technical Sciences, 69(3). https://doi.org/10.24425/bpasts.2021.136751

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free