Using synchrotron radiation-based infrared microspectroscopy to reveal microchemical structure characterization: frost damaged wheat vs. normal wheat.

22Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

This study was conducted to compare: (1) protein chemical characteristics, including the amide I and II region, as well as protein secondary structure; and (2) carbohydrate internal structure and functional groups spectral intensities between the frost damaged wheat and normal wheat using synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM). Fingerprint regions of specific interest in our study involved protein and carbohydrate functional group band assignments, including protein amide I and II (ca. 1774-1475 cm(-1)), structural carbohydrates (SCHO, ca. 1498-1176 cm(-1)), cellulosic compounds (CELC, ca. 1295-1176 cm(-1)), total carbohydrates (CHO, ca. 1191-906 cm(-1)) and non-structural carbohydrates (NSCHO, ca. 954-809 cm(-1)). The results showed that frost did cause variations in spectral profiles in wheat grains. Compared with healthy wheat grains, frost damaged wheat had significantly lower (p < 0.05) spectral intensities in height and area ratios of amide I to II and almost all the spectral parameters of carbohydrate-related functional groups, including SCHO, CHO and NSCHO. Furthermore, the height ratio of protein amide I to the third peak of CHO and the area ratios of protein amide (amide I + II) to carbohydrate compounds (CHO and SCHO) were also changed (p < 0.05) in damaged wheat grains. It was concluded that the SR-FTIR microspectroscopic technique was able to examine inherent molecular structure features at an ultra-spatial resolution (10 × 10 μm) between different wheat grains samples. The structural characterization of wheat was influenced by climate conditions, such as frost damage, and these structural variations might be a major reason for the decreases in nutritive values, nutrients availability and milling and baking quality in wheat grains.

Cite

CITATION STYLE

APA

Xin, H., Zhang, X., & Yu, P. (2013). Using synchrotron radiation-based infrared microspectroscopy to reveal microchemical structure characterization: frost damaged wheat vs. normal wheat. International Journal of Molecular Sciences, 14(8), 16706–16718. https://doi.org/10.3390/ijms140816706

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free