Double notched long-period fiber grating characterization for CO2 gas sensing applications

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In this study, we applied a double-sided inductively coupled plasma (ICP) process to nanostructure long-period fiber grating (LPFG) in order to fabricate a double-notched LPFG (DNLPFG) sensor with a double-sided surface corrugated periodic grating. Using the sol-gel method, we also added thymol blue and ZnO to form a gas sensing layer, thus producing a DNLPFG CO2 gas sensor. The resulting sensor is the first double-sided etching sensor used to measure CO2. The experimental results showed that as the CO2 concentration increased, the transmission loss increased, and that the smaller the fiber diameter, the greater the sensitivity and the greater the change in transmission loss. When the diameter of the fiber was 32 µm (and the period was 570 µm) and the perfusion rate of CO2 gas was 15%, the maximum loss variation of up to 3.881 dB was achieved, while the sensitivity was 0.2146 dB/% and the linearity was 0.992. These results demonstrate that the DNLPG CO2 gas sensor is highly sensitive.

Author supplied keywords

Cite

CITATION STYLE

APA

Hsu, H. C., Hsieh, T. S., Huang, T. H., Tsai, L., & Chiang, C. C. (2018). Double notched long-period fiber grating characterization for CO2 gas sensing applications. Sensors (Switzerland), 18(10). https://doi.org/10.3390/s18103206

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free