Porous polydivinyl benzene (PDVB) microspheres of narrow size distribution were formed by a single-step swelling process of template uniform polystyrene microspheres with divinyl benzene (DVB), followed by polymerization of the DVB within the swollen template microspheres. The PDVB porous particles were then formed by dissolution of the template polystyrene polymer. Unique "cauliflower-like" ZnO microparticles were prepared by the entrapping of the ZnO precursor ZnCl2 in the PDVB porous microspheres under vacuum, followed by calcination of the obtained ZnCl2-PDVB microspheres in an air atmosphere. The morphology, crystallinity and fluorescence properties of those ZnO microparticles were characterized. This "cauliflower-like" shape ZnO particles is in contrast to a previous study demonstrated the preparation of spherical shaped porous ZnO and C-ZnO microparticles by a similar method, using zinc acetate (ZnAc) as a precursor. Two diverted synthesis mechanisms for those two different ZnO microparticles structures are proposed, based on studies of the distribution of each of the ZnO precursors within the PDVB microspheres. © 2013 by the authors.
CITATION STYLE
Gordon, T., Grinblat, J., & Margel, S. (2013). Preparation of “Cauliflower-Like” ZnO micron-sized particles. Materials, 6(11), 5234–5246. https://doi.org/10.3390/ma6115234
Mendeley helps you to discover research relevant for your work.