Optimization of the Power Conversion Efficiency of CsPbIxBr3−x-Based Perovskite Photovoltaic Solar Cells Using ZnO and NiOx as an Inorganic Charge Transport Layer

9Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

In this study, we analyzed the maximum power conversion efficiency (PCE) of a photovoltaic cell with an ITO/ZnO/CsPbIxBr3−x/NiOx/Au structure, using ZnO and NiOx as the inorganic charge transport layers and CsPbIxBr3−x as an absorption layer. We optimized the thickness of each layer and investigated the effects of the defect density and interface defect density. To achieve the highest PCE, the optimal thicknesses were 300 nm for the electron transport layer (ZnO), 60 nm for the hole transport layer (NiOx), and 1000 nm for the absorption layer. The absorber defect density was maintained at approximately 1015 cm−3, and the interface defect density was approximately 1011 cm−3. The highest PCE obtained through optimization of each of these factors was 23.07%. These results are expected to contribute to the performance optimization of perovskite solar cells that use inorganic charge carrier transport layers.

Cite

CITATION STYLE

APA

Son, H., & Jeong, B. S. (2022). Optimization of the Power Conversion Efficiency of CsPbIxBr3−x-Based Perovskite Photovoltaic Solar Cells Using ZnO and NiOx as an Inorganic Charge Transport Layer. Applied Sciences (Switzerland), 12(18). https://doi.org/10.3390/app12188987

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free