Toll-like receptors (TLR) recognize bacterial and viral components, but direct interaction of receptor and ligand is unclear. Here, we demonstrate that TLR9 binds directly and sequence-specifically to single-stranded unmethylated CpG-DNA containing a phosphodiester backbone. TLR9-CpG-DNA interaction occurs at the acidic pH (6.5-5.0) found in endosomes and lysosomes. By sequence comparison we identified a potential CpG-DNA binding domain homologous to that described for methyl-CpG-DNA binding proteins. Amino acid substitutions in this region abrogated CpG-DNA binding and led to loss of NF-κB activation. Furthermore, chloroquine and quinacrine, therapeutic agents for autoimmune diseases like rheumatoid arthritis and systemic lupus erythematosus, directly blocked TLR9-CpG-DNA interaction but not TLR2-Pam3Cys binding. Our results demonstrate direct binding of TLR9 to CpG-DNA and suggest that the therapeutic activity of chloroquine and quinacrine in autoimmune diseases may be due to its activity as a TLR9 antagonist and inhibitor of endosomal acidification. © 2004 Wiley-VCH Verlag GmbH & Co. KGaA.
CITATION STYLE
Rutz, M., Metzger, J., Gellert, T., Luppa, P., Lipford, G. B., Wagner, H., & Bauer, S. (2004). Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. European Journal of Immunology, 34(9), 2541–2550. https://doi.org/10.1002/eji.200425218
Mendeley helps you to discover research relevant for your work.