Metabolic profiles in community-acquired pneumonia: Developing assessment tools for disease severity

48Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: This study aimed to determine whether community-acquired pneumonia (CAP) had a metabolic profile and whether this profile can be used for disease severity assessment. Methods: A total of 175 individuals including 119 CAP patients and 56 controls were enrolled and divided into two cohorts. Serum samples from a discovery cohort (n = 102, including 38 non-severe CAP, 30 severe CAP, and 34 age and sex-matched controls) were determined by untargeted ultra-high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics. Selected differential metabolites between CAP patients versus controls, and between the severe CAP group versus non-severe CAP group, were confirmed by targeted mass spectrometry assays in a validation cohort (n = 73, including 32 non-severe CAP, 19 severe CAP and 22 controls). Pearson's correlation analysis was performed to assess relationships between the identified metabolites and clinical severity of CAP. The area under the curve (AUC), sensitivity and specificity of the metabolites for predicting the severity of CAP were also investigated. Results: The metabolic signature was markedly different between CAP patients and controls. Fifteen metabolites were found to be significantly dysregulated in CAP patients, which were mainly mapped to the metabolic pathways of sphingolipid, arginine, pyruvate and inositol phosphate. The alternation trends of five metabolites among the three groups including sphinganine, p-Cresol sulfate, dehydroepiandrosterone sulfate (DHEA-S), lactate and l-arginine in the validation cohort were consistent with those in the discovery cohort. Significantly lower concentrations of sphinganine, p-Cresol sulfate and DHEA-S were observed in CAP patients than in controls (p < 0.05). Serum lactate and sphinganine levels were positively correlated with confusion, urea level, respiratory rate, blood pressure, and age > 65 years (CURB-65), pneumonia severity index (PSI) and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, while DHEA-S inversely correlated with the three scoring systems. Combining lactate, sphinganine and DHEA-S as a metabolite panel for discriminating severe CAP from non-severe CAP exhibited a better AUC of 0.911 (95% confidence interval 0.825-0.998) than CURB-65, PSI and APACHE II scores. Conclusions: This study demonstrates that serum metabolomics approaches based on the LC-MS/MS platform can be applied as a tool to reveal metabolic changes during CAP and establish a metabolite signature related to disease severity.

References Powered by Scopus

Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the management of community-acquired pneumonia in adults

5186Citations
N/AReaders
Get full text

Guidelines for the management of adults with community-acquired pneumonia diagnosis, assessment of severity, antimicrobial therapy, and prevention

2089Citations
N/AReaders
Get full text

Using metaboanalyst 3.0 for comprehensive metabolomics data analysis

1200Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Metabolomic analyses reveals new stage-specific features of the COVID-19

69Citations
N/AReaders
Get full text

Recent advances in LC-MS-based metabolomics for clinical biomarker discovery

66Citations
N/AReaders
Get full text

The utility of MEWS for predicting the mortality in the elderly adults with COVID-19: A retrospective cohort study with comparison to other predictive clinical scores

38Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Ning, P., Zheng, Y., Luo, Q., Liu, X., Kang, Y., Zhang, Y., … Gao, Z. (2018). Metabolic profiles in community-acquired pneumonia: Developing assessment tools for disease severity. Critical Care, 22(1). https://doi.org/10.1186/s13054-018-2049-2

Readers over time

‘18‘19‘20‘21‘22‘23‘24‘2505101520

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 18

62%

Researcher 6

21%

Professor / Associate Prof. 3

10%

Lecturer / Post doc 2

7%

Readers' Discipline

Tooltip

Medicine and Dentistry 27

71%

Nursing and Health Professions 4

11%

Agricultural and Biological Sciences 4

11%

Pharmacology, Toxicology and Pharmaceut... 3

8%

Article Metrics

Tooltip
Mentions
News Mentions: 2
Social Media
Shares, Likes & Comments: 15

Save time finding and organizing research with Mendeley

Sign up for free
0