Prediction of the indoor climate in cultural heritage buildings through machine learning: first results from two field tests

12Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Control of temperature and relative humidity in storage areas and exhibitions is crucial for long-term preservation of cultural heritage objects. This paper explores the possibilities for developing a proactive system, based on a machine-learning model (XGBoost), for predicting the occurrence of unwanted indoor environmental conditions: either a too high or a too low relative humidity, within the forthcoming 24 h. The features used in the model were hourly indoor and outdoor climate recordings, and it was applied to two indoor heritage environments; a storage facility and a church building. The test accuracy (f1-score) of the model was good (0.93 for high RH; 0.93 for low RH) when applied to the storage building, but only 0.78; 0.62 (high RH; low RH) for the church building test. Challenges encountered include difficulties in obtaining good historical climate data sets for training and testing the model, and the dependency of external IT systems, which, if they fail, inactivates the model without a warning. Several issues call for more research: A desirable improvement of the model would be predictions for periods longer than 24 h ahead, still maintaining a high test accuracy. Further perspectives of using machine learning for indoor environmental forecasting could be for indoor air pollution, or energy consumption due to climate control.

Cite

CITATION STYLE

APA

Boesgaard, C., Hansen, B. V., Kejser, U. B., Mollerup, S. H., Ryhl-Svendsen, M., & Torp-Smith, N. (2022). Prediction of the indoor climate in cultural heritage buildings through machine learning: first results from two field tests. Heritage Science, 10(1). https://doi.org/10.1186/s40494-022-00805-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free