Interactions between signaling pathways help guide plant development. In this study, we found that brassinosteroid (BR) signaling converges with SUPPRESSOR OF PHYTOCHROME B4-#3 (SOB3) to influence both the transcription of genes involved in cell elongation and hypocotyl growth. Specifically, SOB3 mutant hypocotyl phenotypes, which are readily apparent when the seedlings are grown in dim white light, were attenuated by treatment with either brassinolide (BL) or the BR biosynthesis inhibitor brassinazole (BRZ). Hypocotyls of SOB3 mutant seedlings grown in white light with a higher fluence rate also exhibited altered sensitivities to BL, further suggesting a connection to BR signaling. However, the impact of BL treatment on SOB3 mutants grown in moderate-intensity white light was reduced when polar auxin transport was inhibited. BL treatment enhanced transcript accumulation for all six members of the SMALL AUXIN UP RNA19 (SAUR19) subfamily, which promote cell expansion, are repressed by SOB3 and light, and are induced by auxin. Conversely, BRZ inhibited the expression of SAUR19 and its homologs. Expression of these SAURs was also enhanced in lines expressing a constitutively active form of the BR signaling component BZR1, further indicating that the transcription of SAUR19 subfamily members are influenced by this hormone signaling pathway. Taken together, these results indicate that SOB3 and BR signaling converge to influence the transcription of hypocotyl growth-promoting SAUR19 subfamily members.
CITATION STYLE
Favero, D. S., Le, K. N., & Neff, M. M. (2017). Brassinosteroid signaling converges with SUPPRESSOR OF PHYTOCHROME B4-#3 to influence the expression of SMALL AUXIN UP RNA genes and hypocotyl growth. Plant Journal, 89(6), 1133–1145. https://doi.org/10.1111/tpj.13451
Mendeley helps you to discover research relevant for your work.