Common path probes are highly desirable for optical coherence tomography as they reduce system complexity and cost by eliminating the need of dispersion compensation and polarization controlling optics. In this work, we demonstrate a monolithic ball lens based, common path, side viewing probe that is suitable for Fourier domain optical coherence tomography. The probe design parameters were simulated in Zemax modeling software and the simulated performance parameters were compared with experimental results. We characterized the performance of the probe by measuring its collection efficiency, resolution, and sensitivity. Our results demonstrated that with a source input power of 25 mW, we could achieve sensitivity of 100.5 dB, which is within 7 dB of the maximum possible sensitivity that could be achieved using a separate reference arm. The axial resolution of the system was found to be 15.6 µm in air and the lateral resolution (full width half maximum) was approximately 49 µm. The probe optics were assembled in a 1 mm diameter hypotube with a 500 µm inner diameter. Images of finger skin acquired using this probe demonstrated clear visualization of the stratum corneum, epidermis, and papillary dermis, along with sweat ducts.
CITATION STYLE
Singh, K., Yamada, D., & Tearney, G. (2015). Common path side viewing monolithic ball lens probe for optical coherence tomography. Sovremennye Tehnologii v Medicine, 7(1), 29–33. https://doi.org/10.17691/stm2015.7.1.04
Mendeley helps you to discover research relevant for your work.