Dalam merancang sistem kontrol dengan menggunakan logika fuzzy terdapat tiga proses yaitu fuzzifikasi, evaluasi rule dan defuzzifikasi. Masing-masing proses tersebut akan mempengaruhi respon sistem yang dikendalikan. Defuzzifikasi merupakan langkah terakhir dalam suatu sistem logika fuzzy dengan tujuannya mengkonversi setiap hasil dari inference engine yang diekspresikan dalam bentuk fuzzy set kesuatu bilangan real. Hasil konversi tersebut merupakan aksi yang diambil oleh sistem kendali logika fuzzy. Karena itu, pemilihan metode defuzzifikasi yang sesuai juga turut mempengaruhi sistem kendali logika fuzzy dalam menghasilkan respon yang optimum. Penelitian ini dilakukan dengan membandingan pada sistem logika fuzzy model Mamdani dengan menggunakan beberapa metode defuzzifikasi, yaitu metode COA (center of area), bisektor, MOM (mean of maximum), LOM (largest of maximum) dan SOM (smallest of maximum). Lima metode defuzzifikasi ini dibandingkan dengan mengimplementasikan pada sistem plant yang sama. Plant yang dipilih yaitu pada pengaturan kecepatan motor DC. Pengujian yang telah dilakukan beberapa pemberian referensi, nilai rata-rata waktu tunda (td) terkecil dari lima kali percobaan adalah dengan menggunakan metode defuzzifikasi bisektor yaitu sebesar 0,1830 detik. Nilai rata-rata waktu naik (tr) terkecil dengan menggunakan metode defuzzifikasi MOM yaitu sebesar 0,5784 detik dan nilai rata-rata waktu penetapan (ts) terkecil dengan menggunakan metode defuzzifikasi LOM yaitu sebesar 0,7789 detik.
CITATION STYLE
Sutikno, S., & Waspada, I. (2012). PERBANDINGAN METODE DEFUZZIFIKASI SISTEM KENDALI LOGIKA FUZZY MODEL MAMDANI PADA MOTOR DC. JURNAL MASYARAKAT INFORMATIKA, 2(3). https://doi.org/10.14710/jmasif.2.3.27-38
Mendeley helps you to discover research relevant for your work.