Background and purpose Disruption of the tumor-brain barrier in meningioma plays a critical role in the development of peritumoral brain edema (PTBE). We hypothesized that osteoporotic conditions may be associated with PTBE occurrence after radiation in patients with intracranial meningioma. Methods We measured Hounsfield units (HU) of the frontal skull on simulation brain CT in patients who underwent linear accelerator (LINAC)-based radiation treatment for intracranial meningioma. Receiver operating characteristic curve analysis was performed to determine the optimal cut-off values for several predictive factors. The cumulative hazard for PTBE was estimated and classified according to these factors. Hazard ratios were then estimated to identify independent predictive factors associated with the development of PTBE after radiation in intracranial meningioma patients. Results A total of 83 intracranial meningiomas in 76 patients who received LINAC-based radiation treatment in our hospital over an approximate 5-year period were included for the study. We found mean frontal skull HU ≤630.625 and gross tumor volume >7.194 cc to be independent predictors of PTBE after radiation treatment in patients with meningioma (hazard ratio, 8.41; P = 0.019; hazard ratio, 5.92; P = 0.032, respectively). In addition, patients who were ≥65 years showed a marginally significant association with PTBE. Conclusions Our study suggests that possible osteoporotic conditions, large tumor volume, and older age may be associated with PTBE occurrence after LINAC-based radiation treatment for intracranial meningioma. In the future we anticipate that these findings may enhance the understanding of the underlying mechanisms of PTBE after radiation in meningioma patients.
CITATION STYLE
Lee, R. H., Kim, J. M., Cheong, J. H., Ryu, J. I., Kim, Y. S., & Han, M. H. (2020). Significance of skull osteoporosis to the development of peritumoral brain edema after LINAC-based radiation treatment in patients with intracranial meningioma. PLoS ONE, 15(2). https://doi.org/10.1371/journal.pone.0226312
Mendeley helps you to discover research relevant for your work.