Predicting ‘Brainage’ in late childhood to adolescence (6-17yrs) using structural MRI, morphometric similarity, and machine learning

1Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Brain development is regularly studied using structural MRI. Recently, studies have used a combination of statistical learning and large-scale imaging databases of healthy children to predict an individual’s age from structural MRI. This data-driven, predicted ‘Brainage’ typically differs from the subjects chronological age, with this difference a potential measure of individual difference. Few studies have leveraged higher-order or connectomic representations of structural MRI data for this Brainage approach. We leveraged morphometric similarity as a network-level approach to structural MRI to generate predictive models of age. We benchmarked these novel Brainage approaches using morphometric similarity against more typical, single feature (i.e., cortical thickness) approaches. We showed that these novel methods did not outperform cortical thickness or cortical volume measures. All models were significantly biased by age, but robust to motion confounds. The main results show that, whilst morphometric similarity mapping may be a novel way to leverage additional information from a T1-weighted structural MRI beyond individual features, in the context of a Brainage framework, morphometric similarity does not provide more accurate predictions of age. Morphometric similarity as a network-level approach to structural MRI may be poorly positioned to study individual differences in brain development in healthy participants in this way.

Cite

CITATION STYLE

APA

Griffiths-King, D., Wood, A. G., & Novak, J. (2023). Predicting ‘Brainage’ in late childhood to adolescence (6-17yrs) using structural MRI, morphometric similarity, and machine learning. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42414-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free