Antimicrobial Susceptibility and Genetic Prevalence of Extended-Spectrum β-Lactamases in Gram-Negative Rods Isolated from Clinical Specimens in Pakistan

4Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

The prevalence of extended-spectrum β-lactamase (ESBL) genes has increased remarkably, resulting in multidrug-resistant gram-negative rods (GNRs) in clinical specimens. This cross-sectional study aimed to determine the antimicrobial susceptibility of ESBL-producing GNRs and its correlation with corresponding genes. Two hundred and seventy-two (n = 272) samples were evaluated for the molecular identification of ESBL genes by polymerase chain reaction after confirmation with the modified double-disc synergy test. E. coli 64.0% (n = 174) was the most prevalent ESBL producer, followed by Klebsiella species 27.2% (n = seventy-four), Acinetobacter species 6.6% (n = eighteen) and others 2.2% (n = six). These ESBL-producing isolates showed resistance to β-lactam antibiotics, i.e., sulbactam/cefoperazone (41.5%), piperacillin/tazobactam (39.3%), meropenem (36.0%), imipenem (34.2%) and non- β-lactam antibiotics, i.e., nalidixic acid (89.0%), co-trimoxazole (84.9%), ciprofloxacin (82.4%), gentamicin (46.3%), nitrofurantoin (24.6%), amikacin (19.9%) and fosfomycin (19.9%). The incidences of the ESBLs-producing genes blaCTX-M, blaTEM, blaOXA and blaSHV were 91.2%, 61.8%, 39.3% and 17.6%, respectively. Among nine multiple-gene combinations, blaCTX-M + blaTEM (30.5%) was the most prevalent combination, followed by blaCTX-M + blaOXA + blaTEM (14.0%), blaCTX-M + blaOXA (13.6%), blaCTX-M + blaTEM + blaSHV (7.0%), blaCTX-M + blaSHV (2.2%), blaCTX-M + blaOXA + blaSHV (2.2%) and blaOXA + blaTEM (1.8%). ESBLs producing GNRs carrying blaCTX-M, blaTEM, blaOXA and blaSHV showed resistances to β-lactam antibiotics, i.e., ampicillin, amoxillin-clavulanic acid, cefotaxime and ceftazidime but were susceptible to carbapenems (meropenem and imipenem), β-lactam-β-lactamase inhibitor combination (piperacillin/tazobactam) and non-β-lactam antibiotics i.e., aminoglycoside (amikacin and gentamicin), nitrofurantoin and fosfomycin. These antibiotics that demonstrated activity may be used to treat infections in clinical settings.

Cite

CITATION STYLE

APA

Idrees, M. M., Rimsha, R., Idrees, M. D., & Saeed, A. (2023). Antimicrobial Susceptibility and Genetic Prevalence of Extended-Spectrum β-Lactamases in Gram-Negative Rods Isolated from Clinical Specimens in Pakistan. Antibiotics, 12(1). https://doi.org/10.3390/antibiotics12010029

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free