We consider the problem of learning real-valued functions from random examples when the function values are corrupted with noise. With mild conditions on independent observation noise, we provide characterizations of the learnability of a real-valued function class in terms of a generalization of the Vapnik-Chervonenkis dimension, the fat-shattering function, introduced by Kearns and Schapire. We show that, given some restrictions on the noise, a function class is learnable in our model if an only if its fat-shattering function is finite. With different (also quite mild) restrictions, satisfied for example by guassion noise, we show that a function class is learnable from polynomially many examples if and only if its fat-shattering function grows polynomially. We prove analogous results in an agnostic setting, where there is no assumption of an underlying function class. © 1996 Academic Press, Inc.
CITATION STYLE
Bartlett, P. L., Long, P. M., & Williamson, R. C. (1996). Fat-shattering and the learnability of real-valued functions. Journal of Computer and System Sciences, 52(3), 434–452. https://doi.org/10.1006/jcss.1996.0033
Mendeley helps you to discover research relevant for your work.