Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital

117Citations
Citations of this article
114Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Phenobarbital produces its anti-epileptic actions by increasing the inhibitory drive of γ-aminobutyric acid. However, following recurrent seizures, γ-aminobutyric acid excites neurons because of a persistent increase of chloride raising the important issue of whether phenobarbital could aggravate persistent seizures. Here we compared the actions of phenobarbital on initial and established ictal-like events in an in vitro model of mirror focus. Using the in vitro three-compartment chamber preparation with the two hippocampi and their commissural fibres placed in three different chambers, kainate was applied to one hippocampus and phenobarbital contralaterally, either after one ictal-like event or after many recurrent ictal-like events that produce an epileptogenic mirror focus. Field, perforated patch and single-channel recordings were used to determine the effects of γ-aminobutyric acid and their modulation by phenobarbital, and alterations of the chloride cotransporters were investigated using sodium-potassium-chloride cotransporter 1 and potassium chloride cotransporter 2 antagonists, potassium chloride cotransporter 2 immunocytochemistry and sodium-potassium-chloride cotransporter 1 knockouts. Phenobarbital reduced initial ictal-like events and prevented the formation of a mirror focus when applied from the start. In contrast, phenobarbital aggravated epileptiform activities when applied after many ictal-like events by enhancing the excitatory actions of γ-aminobutyric acid due to increased chloride. The accumulation of chloride and the excitatory actions of γ-aminobutyric acid in mirror foci neurons are mediated by the sodium-potassium-chloride cotransporter 1 chloride importer and by downregulation and internalization of the chloride-exporter potassium-chloride cotransporter 2. Finally, concomitant applications of the sodium-potassium- chloride cotransporter 1 antagonist bumetanide and phenobarbital decreased excitatory actions of γ-aminobutyric acid and prevented its paradoxical actions on mirror focus. Therefore, the history of seizures prior to phenobarbital applications determines its effects and rapid treatment of severe potentially epileptogenic-neonatal seizures is recommended to prevent secondary epileptogenesis associated with potassium chloride cotransporter 2 downregulation and acquisition of the excitatory γ-aminobutyric acid phenotype. © 2011 The Author.

Cite

CITATION STYLE

APA

Nardou, R., Yamamoto, S., Chazal, G., Bhar, A., Ferrand, N., Dulac, O., … Khalilov, I. (2011). Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital. Brain, 134(4), 987–1002. https://doi.org/10.1093/brain/awr041

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free