Bruton's Tyrosine Kinase Phosphorylates cAMP-responsive Element-binding Protein at Serine 133 during Neuronal Differentiation in Immortalized Hippocampal Progenitor Cells

33Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Bruton's tyrosine kinase (BTK) is a member of the Tec family of kinases, which is a subgroup of the nonreceptor cytoplasmic protein tyrosine kinases. BTK has been shown to be important in the proliferation, differentiation, and signal transduction of B cells. Mutations in BTK result in B cell immune deficiency disorders, such as X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice. Although BTK plays multiple roles in the life of a B cell, its functional role in neuronal cells has not been elucidated. In the present study, we demonstrate that BTK activates transcription factor, cAMP response element (CRE)-binding protein (CREB), and subsequent CRE-mediated gene transcription during basic fibroblast growth factor (bFGF)-induced neuronal differentiation in immortalized hippocampal progenitor cells (H19-7). The kinase activity of BTK is also induced by bFGF, and BTK directly phosphorylates CREB at Ser-133 residue, indicating that BTK has a dual protein kinase activity. In addition, blockading BTK activation significantly inhibits CREB phosphorylation as well as the neurite outgrowth induced by bFGF in H19-7 cells. These results suggest that the activation of BTK and the subsequent phosphorylation of CREB at Ser-133 are important in the neuronal differentiation of hippocampal progenitor cells.

Cite

CITATION STYLE

APA

Yang, E. J., Yoon, J. H., & Chung, K. C. (2004). Bruton’s Tyrosine Kinase Phosphorylates cAMP-responsive Element-binding Protein at Serine 133 during Neuronal Differentiation in Immortalized Hippocampal Progenitor Cells. Journal of Biological Chemistry, 279(3), 1827–1837. https://doi.org/10.1074/jbc.M308722200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free