Dynamics of miura folded metamaterials

0Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper, we investigated dynamics of Miura-origami structures composed of Miura cells with rigid facets and elastic hinges, under three types of excitation: harmonic force, harmonic displacement and impact. Under the simple harmonic excitations of force and displacement, different crease stiffnesses affected the vibration responses of Miura folded Metamaterials. The results show that the Miura model of the single-degree-of-freedom structure has similar frequency responses under the two kinds of excitation. By changing the crease stiffness, it can change its resonance frequency and achieve a good low-frequency vibration isolation effect. The multi-degree-of-freedom model can reduce the resonance frequency by increasing the number of stacks. Under the impact load, there are two types of mechanical waves: shock wave and vibration wave. Except the first layer, the other Miura units will have the deformation characteristics of stretching before compression. The propagation speed of mechanical waves and ratio of the maximum strain amplitude at different layers can be designed by changing the crease stiffness. Meanwhile, the response of multi-layer stacked Miura folded Metamaterials is very different at steady state. The influence of damping coefficient on vibration wave is more obvious. When the impact load amplitude is changed, the response at steady state is almost constant.

Cite

CITATION STYLE

APA

Zhang, D., & Zhou, X. (2019). Dynamics of miura folded metamaterials. In Lecture Notes in Electrical Engineering (Vol. 549, pp. 17–37). Springer Verlag. https://doi.org/10.1007/978-981-13-6061-9_2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free