Bio-responsive polymer hydrogels homeostatically regulate blood coagulation

131Citations
Citations of this article
205Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Bio-responsive polymer architectures can empower medical therapies by engaging molecular feedback-response mechanisms resembling the homeostatic adaptation of living tissues to varying environmental constraints. Here we show that a blood coagulation-responsive hydrogel system can deliver heparin in amounts triggered by the environmental levels of thrombin, the key enzyme of the coagulation cascade, which - in turn - becomes inactivated due to released heparin. The bio-responsive hydrogel quantitatively quenches blood coagulation over several hours in the presence of pro-coagulant stimuli and during repeated incubation with fresh, non-anticoagulated blood. These features enable the introduced material to provide sustainable, autoregulated anticoagulation, addressing a key challenge of many medical therapies. Beyond that, the explored concept may facilitate the development of materials that allow the effective and controlled application of drugs and biomolecules. © 2013 Macmillan Publishers Limited. All rights reserved.

Cite

CITATION STYLE

APA

Maitz, M. F., Freudenberg, U., Tsurkan, M. V., Fischer, M., Beyrich, T., & Werner, C. (2013). Bio-responsive polymer hydrogels homeostatically regulate blood coagulation. Nature Communications, 4. https://doi.org/10.1038/ncomms3168

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free