CNVassoc: Association analysis of CNV data using R

15Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Copy number variants (CNV) are a potentially important component of the genetic contribution to risk of common complex diseases. Analysis of the association between CNVs and disease requires that uncertainty in CNV copy-number calls, which can be substantial, be taken into account; failure to consider this uncertainty can lead to biased results. Therefore, there is a need to develop and use appropriate statistical tools. To address this issue, we have developed CNVassoc, an R package for carrying out association analysis of common copy number variants in population-based studies. This package includes functions for testing for association with different classes of response variables (e.g. class status, censored data, counts) under a series of study designs (case-control, cohort, etc) and inheritance models, adjusting for covariates. The package includes functions for inferring copy number (CNV genotype calling), but can also accept copy number data generated by other algorithms (e.g. CANARY, CGHcall, IMPUTE). Results: Here we present a new R package, CNVassoc, that can deal with different types of CNV arising from different platforms such as MLPA o aCGH. Through a real data example we illustrate that our method is able to incorporate uncertainty in the association process. We also show how our package can also be useful when analyzing imputed data when analyzing imputed SNPs. Through a simulation study we show that CNVassoc outperforms CNVtools in terms of computing time as well as in convergence failure rate. Conclusions: We provide a package that outperforms the existing ones in terms of modelling flexibility, power, convergence rate, ease of covariate adjustment, and requirements for sample size and signal quality. Therefore, we offer CNVassoc as a method for routine use in CNV association studies. © 2011 Subirana et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Subirana, I., Diaz-Uriarte, R., Lucas, G., & Gonzalez, J. R. (2011). CNVassoc: Association analysis of CNV data using R. BMC Medical Genomics, 4. https://doi.org/10.1186/1755-8794-4-47

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free