Integrasi numerik merupakan merupakan suatu metode untuk menetukan nilai integrasi dari suatu fungsi dimana jika suatu fungsi tersebut sulit diselesaikan secara analitik menggunakan metode baku yang ada pada ilmu kalkulus. Solusi yang didapatkan oleh integrasi numerik ini adalah nilai hampiran atau aproksimasi sehingga akan muncul error . Terdapat dua metode integrasi numerik yaitu metode Newon-Coates (equally space) dan metode Gauss Kuadratur (unequally space). Pada artikel ini akan dikaji integrasi numerik dengan metode Gauss Kuadratur yaitu metode Gauss-Legendre, Gauss-Lobatto, dan Gauss-Kronroad yang akan diterapakan untuk menentukan nilai hampiran integrasi dari fungsi eksponensial. Sehingga akan dilakukan analisis error untuk menetukan metode mana yang memiliki akurasi paling bagus yang mendekati nilai eksaknya.
CITATION STYLE
Darmawan, R. N. (2016). Perbandingan Metode Gauss- Legendre, Gauss-Lobatto, dan Gauss-Kronrod pada Integrasi Numerik Fungsi Eksponensial. JMPM: Jurnal Matematika Dan Pendidikan Matematika, 1(2), 99. https://doi.org/10.26594/jmpm.v1i2.596
Mendeley helps you to discover research relevant for your work.