Clenbuterol, a β-adrenoceptor agonist, has been reported to induce skeletal muscle hypertrophy. However, it has also been known to reduce aerobic exercise performance and to deleteriously affect endurance and sprint exercise performance in rats. In the present study, the chronic administration of clenbuterol (2 mg/kg body weight; 30 days) resulted in various ultrastructural changes in three different types of muscles, gastrocnemius, a mixed-fiber type; anterior latissimus dorsi (ALD), a predominantly fast-twitch type; and diaphragm, a largely oxidative-type. The most prominent changes included mitochondrial swelling, matricular vesiculation in mitochondria, mitochondrial hyperplasia, sarcoplasmic vesiculation, and intermyofibrillar dilations. An increase in the cross-sectional area of both the subsarcolemmal (170, 167, and 79%) and the intermyofibrillar (129, 134, and 84%) mitochondria is noticed in the gastrocnemius, ALD, and diaphragm, respectively. The ultramicroscopic and morphometric results suggest drug-induced defects in contractile and oxidative activities.
CITATION STYLE
Sundal, S., & Sharma, S. (2007). Ultrastructural findings for the mitochondrial subpopulation of mice skeletal muscle after adrenergic stimulation by clenbuterol. Journal of Physiological Sciences, 57(1), 7–14. https://doi.org/10.2170/physiolsci.RP007106
Mendeley helps you to discover research relevant for your work.