Photosensitizing units have already been applied to enable light-driven catalytic reduction of CO2 with mononuclear rhenium complexes. However, dinuclear catalytic systems that are able to activate CO2 in a cooperative bimetallic fashion have only rarely been combined with photosensitizers. We here present detailed studies on the influence of additional photosensitizers on the catalytic performance of a dirhenium complex (Re2Cl2) and present correlations with spectroscopic measurements, which shed light on the reaction mechanism. The use of [Ir(dFppy)3] (Ir, dFppy=2-(4,6-difluorophenyl)pyridine)) resulted in considerably faster CO2 to CO transformation than [Cu(xant)(bcp)]PF6 (Cu, xant=xantphos, bcp=bathocuproine). Emission quenching studies, transient absorption as well as IR spectroscopy provide information about the electron transfer paths of the intermolecular systems. It turned out that formation of double reduced species [Re2Cl2]2− along with an intermediate with a Re−Re bond ([ReRe]) can be taken as an indication of multi-electron storage capacity. Furthermore, under catalytic conditions a CO2-bridged intermediate was identified.
CITATION STYLE
Giereth, R., Obermeier, M., Forschner, L., Karnahl, M., Schwalbe, M., & Tschierlei, S. (2021). Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re2Cl2 Complex Assisted by Various Photosensitizers. ChemPhotoChem, 5(7), 644–653. https://doi.org/10.1002/cptc.202100034
Mendeley helps you to discover research relevant for your work.