ELL associated factor 1 and ELL associated factor 2 (EAF1/2 factors) are reported to play important roles in tumor suppression and embryogenesis. Our previous studies showed that eaf factors mediated effective convergence and extension (C&E) movements and modulated mesoderm and neural patterning by regulating both non-canonical and canonical Wnt signaling in the early embryonic process. In this study, through knockdown of both eaf1 and eaf2 in embryos, we found that differentiation of primary erythroid cells was blocked, but hematopoietic precursor cells maintained in eafs morphants. Co-injection of c-myb-MO rescued the erythroid differentiation in eafs morphants, as indicated by the restored expression of the erythroid-specific gene, βe3 globin. In addition, low dosage of c-myb effectively blocked the βe3 globin expression in embryos, and did not affect the expression of markers of hematopoietic progenitor cells and other mesoderm, which was similar to the phenotypes we observed in eafs morphants. We also revealed that knockdown Wnt signaling by transiently inducing dn-Tcf in embryos at the bud stage down-regulated the increased c-myb to normal level and also restored βe3 globin expression in eafs morphants. Our evidence points to a novel role for eaf factors in controlling erythroid cell fate by regulating c-Myb expression through canonic Wnt signaling. © 2013 Ma and Liu.
CITATION STYLE
Ma, X., & Liu, J. X. (2013). Eafs Control Erythroid Cell Fate by Regulating c-myb Expression through Wnt Signaling. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0064576
Mendeley helps you to discover research relevant for your work.