Natural van der Waals heterostructure cylindrite with highly anisotropic optical responses

17Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The mechanical exfoliation of naturally occurring layered materials has emerged as an easy and effective method for achieving ultrathin van der Waals (vdW) heterostructures with well-defined lattice orientations of the constituent two-dimensional (2D) material layers. Cylindrite is one such naturally occurring vdW heterostructure, where the superlattice is composed of alternating stacks of SnS2-like and PbS-like layers. Although the constituent 2D lattices are isotropic, inhomogeneous strain occurring from local atomic alignment for forcing the commensuration makes the cylindrite superlattice structurally anisotropic. Here, we demonstrate the highly anisotropic optical responses of cylindrite thin flakes induced by the anisotropic crystal structure, including angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent anisotropic third-harmonic generation. Our results provide a promising approach for identifying various natural vdW heterostructure-based 2D materials with tailored optical properties and can be harnessed for realizing anisotropic optical devices for on-chip photonic circuits and optical information processing.

Cite

CITATION STYLE

APA

Dasgupta, A., Gao, J., & Yang, X. (2021). Natural van der Waals heterostructure cylindrite with highly anisotropic optical responses. Npj 2D Materials and Applications, 5(1). https://doi.org/10.1038/s41699-021-00254-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free