An intelligent error correction algorithm for elderly care robots

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

With the development of deep learning, gesture recognition systems based on the neural network have become quite advanced, but the application effect in the elderly is not ideal. Due to the change of the palm shape of the elderly, the gesture recognition rate of most elderly people is only about 70%. Therefore, in this paper, an intelligent gesture error correction algorithm based on game rules is proposed on the basis of the AlexNet. Firstly, this paper studies the differences between the palms of the elderly and young people. It also analyzes the misread gesture by using the probability statistics method and establishes a misread-gesture database. Then, based on the misreading-gesture library, the maximum channel number of different gestures in the fifth layer is studied by using the similar curve algorithm and the Pearson algorithm. Finally, error correction is completed under the game rule. The experimental results show that the gesture recognition rate of the elderly can be improved to more than 90% by using the proposed intelligent error correction algorithm. The elderly-accompanying robot can understand people’s intentions more accurately, which is well received by users.

Cite

CITATION STYLE

APA

Zhang, X., Feng, Z., Yang, X., Xu, T., Qiu, X., & Hou, Y. (2021). An intelligent error correction algorithm for elderly care robots. Applied Sciences (Switzerland), 11(16). https://doi.org/10.3390/app11167316

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free