A new ensemble-based classifier for IGBT open-circuit fault diagnosis in three-phase PWM converter

39Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Three-phase pulse width modulation converters using insulated gate bipolar transistors (IGBTs) have been widely used in industrial application. However, faults in IGBTs can severely affect the operation and safety of the power electronics equipment and loads. For ensuring system reliability, it is necessary to accurately detect IGBT faults accurately as soon as their occurrences. This paper proposes a diagnosis method based on data-driven theory. A novel randomized learning technology, namely extreme learning machine (ELM) is adopted into historical data learning. Ensemble classifier structure is used to improve diagnostic accuracy. Finally, time window is defined to illustrate the relevance between diagnostic accuracy and data sampling time. By this mean, an appropriate time window is achieved to guarantee a high accuracy with relatively short decision time. Compared to other traditional methods, ELM has a better classification performance. Simulation tests validate the proposed ELM ensemble diagnostic performance.

Cite

CITATION STYLE

APA

Xia, Y., Gou, B., & Xu, Y. (2018). A new ensemble-based classifier for IGBT open-circuit fault diagnosis in three-phase PWM converter. Protection and Control of Modern Power Systems, 3(1). https://doi.org/10.1186/s41601-018-0109-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free