Differential pathlength factor in continuous wave functional near-infrared spectroscopy: reducing hemoglobin’s cross talk in high-density recordings

  • Chiarelli A
  • Perpetuini D
  • Filippini C
  • et al.
32Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Functional near-infrared spectroscopy (fNIRS) estimates the functional oscillations of oxyhemoglobin and deoxyhemoglobin in the cortex through scalp-located multiwavelength recordings. Hemoglobin oscillations are inferred through temporal changes in continuous-wave (CW) light attenuation. However, because of the diffusive multilayered head tissue structures, the photon path is longer than the source–detector separation, complicating hemoglobin evaluation. This aspect is incorporated in the modified Beer–Lambert law where the source–detector distance is multiplied by the differential pathlength factor (DPF). Since DPF estimation requires photons’ time-of-flight information, DPF is assumed a priori in CW-fNIRS. Importantly, errors in the DPF spectrum induce hemoglobin cross talk, which is detrimental for fNIRS. We propose to estimate subject-specific DPF spectral dependence relying on multidistance high-density measurements. The procedure estimates the effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering. Since DPF depends on the scattering-to-absorption ratio, EAC limits the spectral dependence assumption to scattering. This approach was compared to a standard frequency-domain multidistance procedure. A good association between the two methods ( r 2 =  0.69) was obtained. This approach could estimate low-resolution maps of the DPF spectral dependence through large field of view, high-density systems, reducing hemoglobin cross talk, and increasing fNIRS sensitivity and specificity to brain activity without instrumentation modification.

Cite

CITATION STYLE

APA

Chiarelli, A. M., Perpetuini, D., Filippini, C., Cardone, D., & Merla, A. (2019). Differential pathlength factor in continuous wave functional near-infrared spectroscopy: reducing hemoglobin’s cross talk in high-density recordings. Neurophotonics, 6(03), 1. https://doi.org/10.1117/1.nph.6.3.035005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free