A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive

187Citations
Citations of this article
100Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Integrated optical phased arrays (OPAs) capable of adaptive beamforming and beam steering enable a wide range of applications. For many of these applications, a large scale 2-D OPA with full phase control for each radiating element is essential to achieve a functional low-cost solution. However, the scalability of such OPAs has been hampered by the optical feed distribution difficulties in a planar photonics process, as well as the high power consumption associated with having a large number of phase control units. In this paper, we present a two-chip solution low-power scalable OPA with a nonuniform sparse aperture, providing radiation pattern adjustment and feed distribution feasibility in a CMOS compatible silicon photonics process. The demonstrated OPA with a 128-element aperture achieves the highest reported grating-lobe-free field-of-view (FOV)-to-beamwidth ratio of 16°/0.8°, which is equivalent to a 484-element uniform array. This translates to at least 400 resolvable spots, 30 times more than the state-of-the-art 2-D OPAs. Moreover, by utilizing compact phase shifters in a row-column power delivery grid, we reduce the number of required drivers from 144 to 37. A high-swing pulsewidth modulation (PWM) driving circuit featuring breakdown voltage multipliers and soft turn-on activation significantly reduces the power consumption of the system. The electronic driver chip and the integrated photonic chip are fabricated on a 65-nm CMOS process and a thick silicon-on-insulator (SOI) silicon photonics process, occupying 1.7 mm2 and 2.08 mm2 of active area, respectively.

Cite

CITATION STYLE

APA

Fatemi, R., Khachaturian, A., & Hajimiri, A. (2019). A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive. IEEE Journal of Solid-State Circuits, 54(5), 1200–1215. https://doi.org/10.1109/JSSC.2019.2896767

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free