Citizen Science for Urban Forest Management? Predicting the Data Density and Richness of Urban Forest Volunteered Geographic Information

  • Foster A
  • Dunham I
  • Kaylor C
N/ACitations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Volunteered geographic information (VGI) has been heralded as a promising new data source for urban planning and policymaking. However, there are also concerns surrounding uneven levels of participation and spatial coverage, despite the promotion of VGI as a means to increase access to geographic knowledge production. To begin addressing these concerns, this research examines the spatial distribution and data richness of urban forest VGI in Philadelphia, Pennsylvania and San Francisco, California. Using ordinary least squares (OLS), general linear models (GLM), and spatial autoregressive models, our findings reveal that sociodemographic and environmental indicators are strong predictors of both densities of attributed trees and data richness. Although recent digital urban tree inventory applications present significant opportunities for collaborative data gathering, innovative research, and improved policymaking, asymmetries in the quantity and quality of the data may undermine their effectiveness. If these incomplete and uneven datasets are used in policymaking, environmental justice issues may arise.

Cite

CITATION STYLE

APA

Foster, A., Dunham, I., & Kaylor, C. (2017). Citizen Science for Urban Forest Management? Predicting the Data Density and Richness of Urban Forest Volunteered Geographic Information. Urban Science, 1(3), 30. https://doi.org/10.3390/urbansci1030030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free