Background: Lysophosphatidylcholine (lysoPC), a metabolite from membrane phospholipids, accumulates in the ischemic myocardium and plays an important role in the development of myocardial dysfunction ventricular arrhythmia. In this study, we investigated if baicalein, a major component of Huang Qui, can protect against lysoPC-induced cytotoxicity in rat H9c2 embryonic cardiomyocytes.Methods: Cell viability was detected by the MTT assay; ROS levels were assessed using DCFH-DA; and intracellular free calcium concentrations were assayed by spectrofluorophotometer. Cell apoptosis and necrosis were evaluated by the flow cytometry assay and Hoechst staining. Mitogen-Activated Protein Kinases (MAPKs), which included the ERK, JNK, and p38, and the apoptotic mechanisms including Bcl-2/Bax, caspase-3, caspase-9 and cytochrome c pathways were examined by Western blot analysis. The activation of MAPKs was examined by enzyme-linked immunosorbent assay.Results: We found that lysoPC induced death and apoptosis of H9c2 cells in a dose-dependent manner. Baicalein could prevent lysoPC-induced cell death, production of reactive oxygen species (ROS), and increase of intracellular calcium concentration in H9c2 cardiomyoctes. In addition, baicalein also inhibited lysoPC-induced apoptosis, with associated decreased pro-apoptotic Bax protein, increased anti-apoptotic Bcl-2 protein, resulting in an increase in the Bcl-2/Bax ratio. Finally, baicalein attenuated lysoPC-induced the expression of cytochrome c, casapase-3, casapase-9, and the phosphorylations of ERK1/2, JNK, and p38. LysoPC-induced ERK1/2, JNK, and p38 activations were inhibited by baicalein.Conclusions: Baicalein protects cardiomyocytes from lysoPC-induced apoptosis by reducing ROS production, inhibition of calcium overload, and deactivations of MAPK signaling pathways. © 2014 Chen et al.; licensee BioMed Central Ltd.
CITATION STYLE
Chen, H. M., Hsu, J. H., Liou, S. F., Chen, T. J., Chen, L. Y., Chiu, C. C., & Yeh, J. L. (2014). Baicalein, an active component of Scutellaria baicalensis Georgi, prevents lysophosphatidylcholine-induced cardiac injury by reducing reactive oxygen species production, calcium overload and apoptosis via MAPK pathways. BMC Complementary and Alternative Medicine, 14. https://doi.org/10.1186/1472-6882-14-233
Mendeley helps you to discover research relevant for your work.