Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing

63Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

State-of-the-art memristors are mostly formed by vertical metal–insulator–metal (MIM) structure, which rely on the formation of conductive filaments for resistive switching (RS). However, owing to the stochastic formation of filament, the set/reset voltage of vertical MIM memristors is difficult to control, which results in poor temporal and spatial switching uniformity. Here, a two-terminal lateral memristor based on electron-beam-irradiated rhenium disulfide (ReS2) is realized, which unveils a resistive switching mechanism based on Schottky barrier height (SBH) modulation. The devices exhibit a forming-free, stable gradual RS characteristic, and simultaneously achieve a small transition voltage variation during positive and negative sweeps (6.3%/5.3%). The RS is attributed to the motion of sulfur vacancies induced by voltage bias in the device, which modulates the ReS2/metal SBH. The gradual SBH modulation stabilizes the temporal variation in contrast to the abrupt RS in MIM-based memristors. Moreover, the emulation of long-term synaptic plasticity of biological synapses is demonstrated using the device, manifesting its potential as artificial synapse for energy-efficient neuromorphic computing applications.

Cite

CITATION STYLE

APA

Li, S., Li, B., Feng, X., Chen, L., Li, Y., Huang, L., … Ang, K. W. (2021). Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing. Npj 2D Materials and Applications, 5(1). https://doi.org/10.1038/s41699-020-00190-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free