On the electrochemical migration mechanism of gold in electronics—less reliable than expected?

13Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Electrochemical migration (ECM) forming dendritic short circuits is a major reliability limiting factor in microcircuits. Gold, which is a noble metal, has been regarded as a metallization that can withstand corrosion and also ECM, therefore its application in high-reliability metallization and surface finishing systems became widespread although it has a relatively high and fluctuating price. Gold electrochemical short circuits have been found only in the case of halogen (e.g., chloride containing) contaminants that can initiate the anodic dissolution of gold via complex ion formation. The experimental results of the study demonstrate that gold can form dendritic shorts even without the presence of halogen contaminants, therefore the direct anodic dissolution of gold must also be supposed. This could also be a serious reliability influencing factor even when applying gold metallization systems and must be taken into consideration. The theoretical background of the classical (contaminant-free) model of gold is also discussed in the paper.

Cite

CITATION STYLE

APA

Medgyes, B., Gharaibeh, A., Rigler, D., & Harsányi, G. (2021). On the electrochemical migration mechanism of gold in electronics—less reliable than expected? Materials, 14(18). https://doi.org/10.3390/ma14185237

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free