Non-psychrophilic methanogens capable of growth following long-term extreme temperature changes, with application to mars

12Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii, were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.

Cite

CITATION STYLE

APA

Mickol, R. L., Laird, S. K., & Kral, T. A. (2018). Non-psychrophilic methanogens capable of growth following long-term extreme temperature changes, with application to mars. Microorganisms, 6(2). https://doi.org/10.3390/microorganisms6020034

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free