Endometrial cancer is a common gynecological malignancy. With the onset of EC patients younger, conservative treatment with progesterone has become an important option for patients trying to preserve reproductive function. However, progesterone resistance is a key factor affecting the efficacy of therapy and it is urgent to clarify the mechanism so as to propose a potential target and inhibit the development of endometrial adenocarcinoma and progesterone resistance. MGLL, an important factor involved in lipid mobilization, is overexpressed in many tumors, however the biological function of MGLL in the development of endometrial adenocarcinoma and the process of progesterone resistance still remains unclear. In this study, we first found MGLL was highly expressed in progesterone resistant samples of endometrial adenocarcinoma, and then we verified its expression was increased in endometrial adenocarcinoma. Through in vitro and in vivo experiments, we demonstrated that overexpression of MGLL promoted tumor proliferation, metastasis and the occurrence of progestogen resistance, knockdown MGLL inhibited tumor proliferation, metastasis and reversed progestogen resistance. In addition, knockdown of MGLL can sensitize endometrial adenocarcinoma cells to progesterone, possibly by affecting ROS generation and reducing the expression of AKR1C1. Finally, it was verified that ABX-1431, MGLL inhibitor, reversed progesterone resistance and enhanced the sensitivity of endometrial adenocarcinoma to progesterone both in vitro and in vivo. In conclusion, the high expression of MGLL is involved in the occurrence and development of endometrial adenocarcinoma and progesterone resistance. Targeted inhibition of MGLL by inhibitors may be an effective method for the treatment of progesterone resistance in endometrial adenocarcinoma.
CITATION STYLE
Ma, X., Xia, M., Wei, L., Guo, K., Sun, R., Liu, Y., … Jiang, J. (2022). ABX-1431 inhibits the development of endometrial adenocarcinoma and reverses progesterone resistance by targeting MGLL. Cell Death and Disease, 13(12). https://doi.org/10.1038/s41419-022-05507-z
Mendeley helps you to discover research relevant for your work.