The methionine 549 and leucine 552 residues of friedelin synthase from maytenus ilicifolia are important for substrate binding specificity

2Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Friedelin, a pentacyclic triterpene found in the leaves of the Celastraceae species, demon-strates numerous biological activities and is a precursor of quinonemethide triterpenes, which are promising antitumoral agents. Friedelin is biosynthesized from the cyclization of 2,3-oxidosqualene, involving a series of rearrangements to form a ketone by deprotonation of the hydroxylated inter-mediate, without the aid of an oxidoreductase enzyme. Mutagenesis studies among oxidosqualene cyclases (OSCs) have demonstrated the influence of amino acid residues on rearrangements during substrate cyclization: loss of catalytic activity, stabilization, rearrangement control or specificity changing. In the present study, friedelin synthase from Maytenus ilicifolia (Celastraceae) was ex-pressed heterologously in Saccharomyces cerevisiae. Site-directed mutagenesis studies were performed by replacing phenylalanine with tryptophan at position 473 (Phe473Trp), methionine with serine at position 549 (Met549Ser) and leucine with phenylalanine at position 552 (Leu552Phe). Mutation Phe473Trp led to a total loss of function; mutants Met549Ser and Leu552Phe interfered with the enzyme specificity leading to enhanced friedelin production, in addition to α-amyrin and β-amyrin. Hence, these data showed that methionine 549 and leucine 552 are important residues for the function of this synthase.

Cite

CITATION STYLE

APA

Mazzeu, B. F., Souza-Moreira, T. M., Oliveira, A. A., Remlinger, M., Felippe, L. G., Valentini, S. R., … Furlan, M. (2021). The methionine 549 and leucine 552 residues of friedelin synthase from maytenus ilicifolia are important for substrate binding specificity. Molecules, 26(22). https://doi.org/10.3390/molecules26226806

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free