The structure and the dissociation reaction of oligomers Pr(Poligo) from reduced human prion huPrP(C)(23-231) have been studied by (1)H-NMR and tryptophan fluorescence spectroscopy at varying pressure, along with circular dichroism and atomic force microscopy. The 1H-NMR and fluorescence spectral feature of the oligomer is consistent with the notion that the N-terminal residues including all seven Trp residues, are free and mobile, while residues 105 approximately 210, comprising the AGAAAAGA motif and S1-Loop-HelixA-Loop-S2-Loop-HelixC, are engaged in intra- and/ or inter-molecular interactions. By increasing pressure to 200 MPa, the oligomers tend to dissociate into monomers which may be identified with PrP(C*), a rare metastable form of PrP(C) stabilized at high pressure (Kachel et al., BMC Struct Biol 6:16). The results strongly suggest that the oligomeric form PrP(oligo) is in dynamic equilibrium with the monomeric forms via PrP(C*), namely huPrP(C)[left arrow over right arrow]huPrP(C*)[left arrow over right arrow]huPrP(oligo).
CITATION STYLE
Sasaki, K., Gaikwad, J., Hashiguchi, S., Kubota, T., Sugimura, K., Kremer, W., … Akasaka, K. (2008). Reversible monomer-oligomer transition in human prion protein. Prion, 2(3), 118–122. https://doi.org/10.4161/pri.2.3.7148
Mendeley helps you to discover research relevant for your work.