Several attempts have been made to obtain a radiographic image inside volcanoes using cosmic-ray muons (muography). Muography is expected to resolve highly heterogeneous density profiles near the surface of volcanoes. However, several prior works have failed to make clear observations due to contamination by background noise. The background contamination leads to an overestimation of the muon flux and consequently a significant underestimation of the density in the target mountains. To investigate the origin of the background noise, we performed aMonte Carlo simulation. The main components of the background noise in muography are found to be low-energy protons, electrons and muons in case of detectors without particle identification and with energy thresholds below 1 GeV. This result was confirmed by comparisons with actual observations of nuclear emulsions. This result will be useful for detector design in future works, and in addition some previous works of muography should be reviewed from the view point of background contamination.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Nishiyama, R., Taketa, A., Miyamoto, S., & Kasahara, K. (2016). Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons. Geophysical Journal International, 206(2), 1039–1050. https://doi.org/10.1093/gji/ggw191